

PII: S0040-4039(97)01630-4

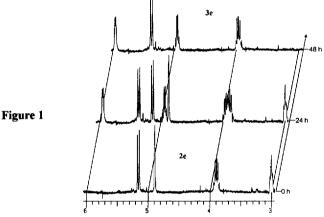
Ring Expansion of N-Acyl Aziridine-2-imides to Oxazoline-4-imides, Useful Precursors of Pure β -Hydroxy α -Aminoacids.

Giuliana Cardillo, Luca Gentilucci, Alessandra Tolomelli and Claudia Tomasini

Dipartimento di Chimica "G. Ciamician" and C.S.F.M. - C.N.R. Università di Bologna, via Selmi 2 - 40126 Bologna - ITALY

Abstract. Optically active N-acyl aziridine 2-imides or 2-carboxylates rearrange to oxazoline-4-imides or 4-carboxylates with high regio and stereo control. This ring expansion followed by mild hydrolisis allows the synthesis of enantiomerically pure β -hydroxy α -aminoacid precursors. © 1997 Published by Elsevier Science Ltd.

The preparation of stereodefined β -hydroxy α -amino acids is an important area of research because of their presence in natural peptides antibiotics; indeed, a number of hydroxy amino acids are crucial components of pharmaceuticals and many protease inhibitors.


Substituted and unsubtituted aziridine-2-carboxylates have attracted much attention as starting material in many important transformations. The ring strain renders the *N*-activated aziridines susceptible to nucleophilic ring opening, which can occur regioselectively in the α or β position thus affording α -substituted β -amino acids or β -substituted α -amino acids. Furthermore, aziridines bearing unsaturations on nitrogen rearrange under a variety of conditions; in particular, *N*-acyl derivatives are readily converted via thermal, acid, or nucleophilic assistance to oxazolines.

We wish to describe here the regioselective ring expansions of N-acyl aziridine-2-imides to afford the corresponding oxazoline-4-imides, useful precursors of β -hydroxy- α -amino acid derivatives in enantiomerically pure form.

The N-acetyl aziridines 2a-c are easily obtained in 1 h by treatment of aziridine-2-imides $1a-c^7$ with 1.2 equiv of acetic anhydride in the presence of 1.2 equiv of pyridine and a catalitic amount of DMAP in CH_2Cl_2 at

room temperature. The N-benzoyl aziridines 2d-f are obtained under the same conditions by treatment of 1d-f' with 1.1 equiv of benzoyl chloride. After purification by crystallization from cyclohexane/ether, 2^8 spontaneously rearrange in CHCl₃, affording quantitatively the *trans* 2-methyl oxazolines 3^9 under complete regio and stereocontrol (Scheme 1).

The *trans* stereochemistry is determined by comparison of the ¹H-NMR coupling constants of the oxazoline H4-H5 protons with the values reported in the literature. ¹⁰ This ring expansion may be followed on recording ¹H NMR spectrum in CDCl₃ (Figure 1): the ¹H-NMR shows a slow decrease of the signals relative to reagent 2 and the corresponding increase of the signals of *trans* oxazoline 3. The reaction is complete within two days, and only 2 and 3 are detected, no intermediate having been observed in the reaction mixture.

The oxazoline hydrolysis can be performed under very mild conditions. The treatment of 3 with a catalytic amount of p-toluensulfonic acid and traces of water in dichloromethane at room temperature for 2-4 h gives 2'-acylamino 3'-hydroxy 4^{11} in high yield as a single isomer.

In order to obtain further informations 12 and to define the better conditions for the ring expansion, the N-acyl 3'-unsubstituted aziridines 5^{7b} are treated under a variety of conditions, including solvents, temperatures, and acid catalysis. Depending on these parameters, 5 are regioselectively converted into the corresponding oxazolines 6, as confirmed by 1 H-NMR and GC-MS analysis of the reaction mixture (Scheme 2). The presence of water traces caused also the formation of variable amounts of the β -hydroxy α -aminoacids 7.

Representative results are reported in Table 1. 5a Rearranges to 6a in 95% yield in CHCl₃ at room temperature after 20 h (Entry 1). The hydrolysis of 6a was performed under the above reported mild conditions to give almost quantitatively the β -hydroxy α -amino derivative 7a (Scheme 2).

By refluxing 5a in CHCl₃, the rearrangement to 6a is quantitative in 2 h, althought traces of 7a are observed (Entry 2). On the other hand, by treatment of 5a in THF, CH₂Cl₂, or toluene at reflux only poor convertions are observed (Entries 3, 4, and 5). When a catalytic amount of Amberlyst H-15 is added to a solution of 5a in toluene at reflux, a complete conversion is obtained (Entry 6), but a considerable amount of 7a

is also formed. Similar results can be observed when a catalytic amount of BF₃·Et₂O is added at -78 C to a solution of 5a in CH₂Cl₂ (Entry 7).

Entry	5	Solvent	Acid	Temp (°C)	Time (h)	5ª (%)	6ª (%)	7ª (%)
1	a	CHCl ₃	-	r.t.	20	traces	>95	-
2	a	CHCl ₃	-	$\Delta^{\mathbf{b}}$	2	-	>95	traces
3	a	THF	-	$\Delta^{\mathbf{b}}$	20	90	6	4
4	а	CH_2Cl_2	-	$\Delta^{\mathbf{b}}$	18	86	7	7
5	а	C ₆ H ₅ CH ₃	-	$\Delta^{\mathbf{b}}$	20	>95	-	traces
6	а	C ₆ H ₅ CH ₃	Amberlyst H-15	Δ^{b}	6	8	71	21
7	а	CH_2Cl_2	BF ₃ ·Et ₂ O	-78	4	5	85	10
8	b	CHCl ₃	-	r.t.	10	-	>95	-

Table 1. Ring Expansion of 5 to 6 in Function of Solvent, Temperature and Acidity.

A faster ring expansion occurs when the aziridine is activated with a benzoyl group. The N-benzoyl aziridine 5b rearranges in CHCl₃ in 10 h at room temperature affording quantitavely the 2-phenyl oxazoline 6b, again with complete regio-control (Entry 8).

The non-destructive removal of the chiral auxiliary is easily achieved under the conditions reported by Evans¹³ (Scheme 3). Treatment of **4a** with LiOH/H₂O₂ in THF/H₂O at 0°C affords the chiral imidazolidin-2-one and D-N-acetyl threonine **8a**, ¹⁴ confirming that the ring expansion occurs with retention of the configuration. Further hydrolysis of **8a** with 6N HCl/methanol at reflux gives free D-threonine **9a**, ¹⁵ which is purified on cation-excange resin using NH₄OH as eluant. Following the same procedure, after complete deprotection of **7a** free D-serine **9b**. ¹⁵ is obtained.

Scheme 3
a:
$$R = Me$$

b: $R = H$

$$7a, 4a \quad LiOOH \\ >70\%$$

$$NH \\ >R$$

$$NH \\ + HO \\ NH \\ + HO \\ NH \\ + HO \\ NH \\ + NCOMe$$

$$R \quad \frac{6N \ HCl}{MeOH} \\ >85\%$$

In order to control the effect of the substituent in position 2 of the aziridine, the ring expansion is studied on racemic N-acyl benzyl aziridine-2-carboxylate 10¹⁶ (Scheme 4).

By stirring a solution of 10a in CHCl₃ both at room temperature and at reflux, no traces of oxazoline 11a or 2'-acetylamino 3'-hydroxy derivative 12a are obtained after 20 h. On the contrary, in the presence of BF₃·Et₂O (2 equiv), 12a is isolated after 12 h in quantitative yield. On the other hand, treatment of N-benzoyl benzyl 2-carboxylate 10b with 2 equiv of BF₃·Et₂O in CHCl₃ at reflux gives exclusively the oxazoline 11b.

Scheme 4

a:
$$R = Me$$
b: $R = Ph$

Ph

O

N

O

O

O

O

HNCOR

In conclusion, chiral oxazoline-4-imides 3 are excellent precursors of optically pure β -hydroxy α -aminoacid derivatives 4, which are obtained by mild hydrolysis in high yield and with retention of the configuration. The oxazoline-4-imides 3 are simply prepared by regio and stereoselective rearrangement of the

^a Calculated on the basis of ¹H NMR and GC-MS analysis of crude reaction mixtures. ^b Reflux.

corresponding chiral N-acyl aziridine-2-imides 2. The ring expansion occurs quantitatively in chloroform, while it is very slow in other solvents, in which its rate is enhanced by the presence of acids. The N-acyl aziridine-2-carboxylates 10 show a slightly different behaviour, being the ring expansion more difficult.

Acknowledgments. We thank M.U.R.S.T. for financial support. We wish to thank the University of Bologna for funds for selected research topics.

References and Notes

- 1. Choi, S. K.; Lee, J. S.; Kim, J. O.; Lee, W. K. J. Org. Chem. 1997, 62, 743, and references therein.
- 2. Tanner, D. Angew. Chem. Int. Ed. 1994, 33, 599.
- 3. (a) Legters, J.; Thijs, L.; Zwanenburg, B. Recl. Trav. Chim. Pays-Bas 1992, 111, 16. (b) Legters, J.; Willems, J. G. H.; Thijs, L.; Zwanenburg, B. Recl. Trav. Chim. Pays-Bas 1992, 111, 59. (c) Dauban, P.; Dubois, L.; Tran Huu Dau, M. E.; Dodd, R. H. J. Org. Chem. 1995, 60, 2035 and references therein.
- 4. Burnstein, I. J.; Fanta, P. E.; Green, B. S. J. Org. Chem. 1970, 35, 4084.
- 5. (a) Bates, S. G.; Varelas, M. A. Can. J. Chem. 1980, 58, 2562. (b) Haidukewych, D.; Meyers, A. I. Tetrahedron Lett. 1972, 30, 3031.
- 6. Foglia, T. A.; Gregory, L. M.; Maerkel, G. J. Org. Chem. 1970, 35, 3779.
- (a) Cardillo, G.; Gentilucci, L.; Tomasini, C.; Visa Castejon-Bordas, M. P. Tetrahedron: Asymmetry 1996, 755.
 (b) Cardillo, G.; Casolari, S.; Gentilucci, L.; Tomasini, C. Angew. Chem. Int. Ed. Engl. 1996, 35, 1848.
- 8. Analytical data for 2e: 1 H-NMR (CDCl₃) δ 0.73 (d, J=6.6 Hz, 3H, CH₃), 1.09 (t, J=7.4 Hz, 3H, CH₃), 1.58-1.86 (m, 2H, CH₂), 2.84 (s, 3H, NCH₃), 2.99 (dt, J=2.7, 5.7 Hz, 1H, CHCH₂), 3.90 (dq, J=6.6, 8.7 Hz, 1H, CHMe), 4.89 (d, J=2.7 Hz, 1H, COCH), 5.15 (d, J=8.7 Hz, 1H, CHPh), 7.00-8.10 (m, 10H, Ph).
- 9. Analytical data for 3e: IR v 1720, 1660, 1420 cm⁻¹; ¹H-NMR (CDCl₃) δ 0.83 (d, J = 6.6 Hz, 3H, CH₃), 1.03 (t, J = 7.3 Hz, 3H, CH₃), 1.74-1.88 (m, 2H, CH₂), 2.89 (s, 3H, NCH₃), 3.96 (dq, J = 6.6, 8.8 Hz, 1H, CHMe), 4.95 (q, J = 5.0 Hz, 1H, CHCH₂), 5.37 (d, J = 8.8 Hz, 1H, CHPh), 5.95 (d, J = 5.0 Hz, 1H, COCH), 7.10-8.20 (m, 10H, Ph).
- 10. Pines, S. H.; Kozlowski, M. A.; Karady, S. J. Org. Chem. 1969, 34, 1621.
- 11. Analytical data for **4e**: IR v 3400, 1729, 1654, 1648, 1424, 1378 cm⁻¹; ¹H-NMR (CDCl₃) δ 0.84 (d, J = 6.5 Hz, 3H, CH₃), 1.07 (t, J = 7.4 Hz, 3H, CH₃), 1.40-1.85 (m, 2H, CH₂), 2.87 (s, 3H, NCH₃), 3.93 (dq, J = 6.5, 8.7 Hz, 1H, CHMe), 4.11 (ddd, J = 1.8, 5.8, 7.4 Hz, 1H, CHCH₂), 5.31 (d, J = 8.7 Hz, 1H, CHPh), 6.31 (dd, J = 1.8, 8.6 Hz, 1H, COCH), 7.10-8.15 (m, 11H, NH + Ph); [α]_D = -82 (c 0.2, CHCl₃).
- 12. While this work was in progress, Hori published his theoretical study: Hory, K.; Nishiguch T.; Nabeja, A. J. Org. Chem. 1997, 62, 3081.
- 13. Gage, J. R.; Evans, D. A. Org. Synthesis 1989, 68, 83.
- 14. For 8a: $[\alpha]_D = -10$ (c 3.0, MeOH). The absolute stereochemistry of 8a was assigned by comparison with N-acetyl threonine prepared from commercially available L-threonine: $[\alpha]_D = +12$ (c 4.7, MeOH).
- 15. For 9a: $[\alpha]_D = +27$ (c 1.0, H₂O), in good agreement with a typically reported value: $[\alpha]_D = +29$ (c 5.0, H₂O). For 9b: $[\alpha]_D = -12$ (c 1.4, 5N HCl), in good agreement with a typically reported value: $[\alpha]_D = -13$ (c 5.0, 5N HCl).
- 16. Prepared by acylation under the above reported conditions of the racemic benzyl aziridine-2-carboxylate obtained by Gabriel-Cromwell procedure. 7a